

## **GCE MARKING SCHEME**

**CHEMISTRY AS/Advanced** 

**JANUARY 2012** 

## **GCE Chemistry – CH1**

## **SECTION A**

Q.1

| 1s         | 2s       | <b>2</b> p | 3s                   | 3р       |
|------------|----------|------------|----------------------|----------|
| <b>1</b> 1 | <b>1</b> | <u> </u>   | $\downarrow\uparrow$ | <u> </u> |

[1]

**Q.2** B / 13

[1]

Q.3 Acid: Proton donor (1)

Dynamic equilibrium: Reversible reaction where the **rate** of forward and reverse reactions is equal (1)

[2]

**Q.4** (a)

|                               | 1     | 2     | 3     | 4     |  |  |  |
|-------------------------------|-------|-------|-------|-------|--|--|--|
| Volume used / cm <sup>3</sup> | 20.75 | 20.20 | 20.10 | 20.30 |  |  |  |

[1]

(b) 20.20 cm<sup>3</sup>

[1]

**Q.5** A

[1]

**Q.6** (a) Ratio of C:H is 1:1.33 (1)

Emp. Formula =  $C_3H_4$  (1)

[2]

(b) Molecular formula =  $C_9H_{12}$ 

[1]

**SECTION A TOTAL [10]** 

## **SECTION B**

| Q.7 | (a) | (i)   | Temperature: 298K / 25°C (1) Pressure: 1 atm / 101.325 kPa or 100 kP (1)                                                                                        | a<br>[2]   |  |
|-----|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|
|     |     | (ii)  | Hydrogen gas is an element in its standard state                                                                                                                | [1]        |  |
|     |     | (iii) | $\Delta H = \Delta H_f (C_5 H_{12}) + 5 \Delta H_f (H_2 O) - 5 \Delta H_f (CO) - 11 \Delta H_f (H_2)$ (1)                                                       |            |  |
|     |     |       | $\Delta H_f (C_5 H_{12}) = -1049 - 5 (-286) + 5 (-111) $ (1)                                                                                                    |            |  |
|     |     |       | $\Delta H_f (C_5 H_{12}) = -174 \text{ kJ mol}^{-1}$ (1)                                                                                                        | [3]        |  |
|     | (b) | (i)   | Catalyst in different state to reactants                                                                                                                        | [1]        |  |
|     |     | (ii)  | Catalysts provide an alternative route (1) with a lower activation energy (1)                                                                                   | /<br>[2]   |  |
|     |     | (iii) | Lower temperature or less time so less energy needed / Can make alternative production method possible with sustainable starting materia or less waste products | als<br>[1] |  |
|     |     | (iv)  | At higher temperatures particles have more energy (1)                                                                                                           |            |  |
|     |     |       | More collisions have energy above activation energy (1)                                                                                                         |            |  |
|     |     |       | (Can obtain these two marks from correctly labelled Boltzmann energy distribution plot with two temperature lines (1) and Activation energy (1))                |            |  |
|     |     |       | Successful collisions occur more frequently (1) – 3 max                                                                                                         | [3]        |  |
|     |     |       | QWC: selection of a form and style of writing appropriate to purpose and to complexity of subject matter                                                        | €<br>[1]   |  |
|     | (c) | (i)   | No effect (1)                                                                                                                                                   |            |  |
|     |     |       | Same number of (gas) molecules on both sides of reaction (1)                                                                                                    | [2]        |  |
|     |     | (ii)  | Lower yield of hydrogen (1)                                                                                                                                     |            |  |
|     |     |       | Reaction shifts in endothermic direction to (try to counteract increase in temperature) (1)                                                                     | e<br>[2]   |  |
|     |     | (iii) | No effect                                                                                                                                                       | [1]        |  |

Total [19]

Be: 800 - 1000 kJ mol<sup>-1</sup> (1) **Q.8** (a) Ne:  $1700 - 2300 \text{ cm}^{-1}$  (1) [2] Be (g)  $\rightarrow$  Be<sup>+</sup> (g) + e (b) [1] (c) (i) Greater nuclear charge on He (1) No increase in shielding / Outer electrons same distance from nucleus / Outer electrons in same shell (1) (ii) Outer electron in O is paired in orbital / Outer electron for N is unpaired (1) Repulsion between paired electrons makes it easier to remove outer electron of oxygen (1) [2] Electrons excited to a higher energy level (1) (d) (i) Energy levels are quantised (1) Electrons drop from higher to lower energy levels (1) Energy is emitted as light (1) – 3 max [3] Lines represent the energy emitted (1) when an excited electron drops back (1) from one energy level to another (1) QWC: legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning [1] (ii) Find frequency of convergence limit (1) for Lyman series (1) Ionisation energy is given by E=hf / Energy ∞ frequency (1) [3]

**Total** [14]

**Q.9** (a)  $M_r$  (PbS) = 239.1  $M_r$  (PbO) = 223 (1)

Moles of PbS =  $20,000 \div 239.1 = 83.65$  moles (1)

Mass of PbO = 
$$83.65 \times 223 \div 1000 = 18.7 \text{ kg}$$
 (1) [3]

(b) (i) Sulfur dioxide: Acid rain (1)

- (ii) I. Sum of  $M_r$  of reactants = 223 + 28 = 251 (1) Atom economy = (207 ÷ 251) x 100 = 82.5% (1) [2]
- (ii) II. Method 1 as higher atom economy means less waste / more useful product [1]
- (c) (i) Symbol = Po (1) Mass number = 212 (1) [2]
  - (ii) All three arrows labelled correctly, as shows below, gives two marks
    - Any two arrows labelled correctly gives one mark [2]



- (iii)  $\gamma$ -radiation is high energy / frequency electromagnetic waves (1) It affects neither atomic number nor mass number / it changes neither the number of protons nor neutrons (1) [2]
- (iv) 31.8 hours = 3 half lives (1)

Mass remaining after 3 half lives = 3mg (1) [2]

(d)  $A_r = [(206.0 \times 25.48) + (207.0 \times 22.12) + (208.0 \times 52.40)] \div 100 (1)$  $A_r = 207.3 (1)$ 

1 mark for correct significant figures (answer must be reasonable) [3]

**Total [19]** 

(ii) Moles of copper(II) sulfate  $= 0.250 \times 250/1000 = 6.25 \times 10^{-2} \text{ moles (1)}$ Mass =  $6.25 \times 10^{-2} \times 249.7 = 15.6 g (1)$ [2] II. 1 mark each for: Weighing method Dissolve copper sulfate in a smaller volume of distilled water Transfer to 250.0 cm<sup>3</sup> volumetric / standard flask Use of funnel Wash funnel / glass rod / beaker with distilled water into volumetric flask Add distilled water up to mark Shake solution / mix thoroughly 5 max [5] QWC: organisation of information clearly and coherently; use of specialist vocabulary where appropriate [1] (b) (i) Powder has a greater surface area (1) so gives a higher rate of reaction (1) [2] (ii) Extrapolate lines from start (level at 21.3°C) and end (through points at 180-270 seconds) (1) Temperature rise =  $6.0^{\circ}$ C (Range  $5.8-6.2^{\circ}$ C) (1) [2] Moles =  $0.250 \times 0.05 = 1.25 \times 10^{-2}$  moles Ι. (iii) [1] II. Zinc is the limiting reagent / Copper(II) sulfate is in excess [1]  $\Delta H = -(50)x 4.18 \times 6.0 \div (6.12 \times 10^{-3}) (1)$ III.  $\Delta H = -204902 \text{ J mol}^{-1}$  $\Delta H = -205 \text{ kJ mol}^{-1} (1)$ [2] IV. Enthalpy measures chemical energy, and as heat energy increases, chemical energy must decrease [1] **Total [18]** 

**Q.10** (a)

(i)

 $M_r (CuSO_4.5H_2O) = 249.7$ 

**SECTION B TOTAL [70]** 

[1]